DMX 102UNI
 PROGRAMMABLE UNIVERSAL TRANSMITTER

DC VOLTMETER/AMMETER
PROCESS MONITOR
OHMMETER
THERMOMETER FOR PT/NI/CU
THERMOMETER FOR THERMOCOUPLES DISPLAYS FOR LINEAR POTENTIOMETERS

SAFETY INSTRUCTIONS

Please, read the enclosed safety instructions carefully and observe them!
These instruments should be safeguarded by isolated or common fuses (breakers)!
For safety information the EN 61 010-1 + A2 standard must be observed.
This instrument is not explosion-safe!

TECHNICAL DATA

Measuring instruments of the OMX 102 series conform to the European regulation 89/336/EWG.

The instruments are up to the following European standards:
EN 61010-1 Electrical safety
EN 61326-1 Electronic measuring, control and laboratory devices - Requirements for EMC "Industrial use"

Seismic capacity:
IEC 980: 1993, čl. 6

The instruments are applicable for unlimited use in agricultural and industrial areas.

CONNECTION

Supply of energy from the main line has to be isolated from the measuring leads.

C e

ORBIT MERRET, spol. s r.o.

Vodnanska 675/30
19800 Prague 9
Czech Republic
Tel: +420-281040 200
Fax: +420-281040 299
e-mail: orbit@merret.eu
www.orbit.merret.eu

2 | INSTRUCTIONS FOR USE OMX 102UNI

1. CONTENTS 3
2. INSTRUMENT DESCRIPTION 4
3. INSTRUMENT CONNECTION 6
Measuring ranges 6
Instrument connection 7
Recommended connection of sensors 8
4. INSTRUMENT SETTING 10
Symbols used in the instructions 12
Setting the DP and the [-] sign 12
Control keys function 13
Setting/permitting items into "USER" menu 13
5. SETTING "LIGHT" MENU 14
5.0 Description "LIGHT" menu 15
Setting input - Type "DC" 18
Setting input - Type "102DC" 20
Setting input - Type "PM" 22
Setting input - Type "OHM" 24
Setting input - Type "RTD - Pt" 26
Setting input - Type "RTD - Cu" 28
Setting input - Type "RTD - Ni" 30
Setting input - Type "T/C" 32
Setting input - Type "DU" 34
Setting Limits 36
Setting analog output 37
Selection of programming menu „LIGHT"/„PROFI" 38
Restoration of manufacture setting 38
Calibration - input range (DU) 39
Selection of instrument menu language version 40
Setting new access password 40
Instrument identification 41
6. SETTING "PROFI" MENU 42
6.0 Description of "PROFI" menu 42
6.1 "PROFI" menu - INPUT
6.1.1 Resetting internal values. 44
6.1.2 Setting measuring type, range, mode, rate. 45
6.1.3 Setting the Real Time 53
6.1.4 External input function selection 54
6.2 "PROFI" menu - CHANNEL
6.2.1 Setting measuring parameters (projection, filters, decimal point, description]. 56
6.2.2 Setting mathematic functions 60
6.2.3 Selection of evaluation of $\mathrm{min} / \mathrm{max}$. value 63
6.3 "PROFI" menu - OUTPUT
6.3.1 Setting of excitation level 64
6.3.2 Setting data logging 64
6.3.3 Setting Limits 66
6.3.4 Setting data output 70
6.3.5 Setting analog output 72
6.3.6 Setting of display backlight. 74
6.4 "PROFI" menu - SERVIS
6.4.1 Selection of programming menu "LIGHT"/„PROFI" " 76
6.4.2 Restoration of manufacture setting 77
6.4.3 Calibration - input range (DU) 78
6.4.4 Selection of instrument menu language version 78
6.4.5 Setting new access password 78
6.4.6 Instrument identification 79
7. SETTING ITEMS INTO "USER" MENU 80
8. METHOD OF MEASURING OF THE COLD JUNCTION. 82
9. ERROR STATEMENTS 83
10. DATA PROTOCOL 84
11. TABLE DF SYMBOLS 86
12. TECHNICAL DATA 88
13. INSTRUMENT DIMENSIONS AND INSTALATION 90
14. CERTIFICATE DF GUARANTEE 91

2. INSTRUMENT DESCRIPTION

2.1
 DESCRIPTION

The OMX 102 model range are DIN rail mountable programmable transmitters designed with the utmost versatility and user comfort in mind whilst keeping the cost at a favourable level. The OMX 102 various executions are $\mathrm{UNI}, \mathrm{DC}, \mathrm{PWR}, \mathrm{UQC}$ and T . As a standard the instrument is fitted with a backlit LCD display which projects measured values and configuration settings. OMX 102 UNI is a multifunctional instrument with 8 possible input configurations easily adjustable in the instrument's menu.
The instrument is based on an 32-bit microcontroller, 24-bit A / D and 16-bit D / A converters, which ensures good accuracy, stability and easy operation of the instrument.

TYPES AND RANGES

```
UNI up to 2 individual inputs
    DC: }\quad\pm30/\pm60/1000 mV; \pm20/\pm40/\pm80 Vi \pm90/\pm180 mA
    PM: }\quad\pm5/\pm20\textrm{mA}/4\ldots20\textrm{mA};\pm2/\pm5/\pm10\textrm{V
    OHM: 0..100/300 \Omega/0...1,5/3/24/30 k\Omega
    RTD-Pt: P+ 50/100/500/1000
    RTD-Cu: Cu 50/100
    RTD-Ni: Ni 1 000/10 000
    T/C: J/K/T/E/B/S/R/N/L
    DU: Linear potentiometer (min. 500 \Omega\boxtimes)
```

DC $\pm 1 / \pm 5 \mathrm{~A}_{i} \pm 25 / \pm 50 / \pm 100 / \pm 200 / \pm 400 \mathrm{~V}$

PROGRAMMABLE PROJECTION

Selection:
Measuring range: Setting:

Projection:

ANALOG OUTPUTS

Type:
Quantity:
Range:

COMPENSATION

of conduct:
of conduct in probe:
of CJC [T/C]:

LINEARIZATION

Linearization:* by linear interpolation in 50 points (solely via OM Link)

DIGITAL FILTERS

Floating average:
Exponen. average:
Arithmetic average:
Rounding:
of type of input and measuring range
adjustable signal, e.g. input $0 . . .20 \mathrm{~mA}>0 . .150$
-99M...999M
isolated, programmable with resolution of max. 16 bit, rate $<1 \mathrm{~ms}$
up to 2
$0 \ldots 2 / 5 / 10 V_{1} \pm 10 V_{1} 0 \ldots 5 \mathrm{~mA}, 0 / 4 \ldots 20 \mathrm{~mA}, ~ 0,2 \ldots 2200 \mathrm{~Hz}$
in the menu it is possible to perform compensation for 2-wire connection internal connection (conduct resistance in measuring head)
from 2... 30 measurements
from 2... 100 measurements
from 2... 100 measurements
setting the projection step for display
manual, optional projection on the display may be set in the menu for both limit values of the input
manual or automatic, in the menu it is possible to perform selection of the type of thermocouple and compensation of cold junctions, which is adjustable or automatic[temperature at the brackets]

MATHEMATIC FUCTIONS

Min/max. value: Tare:
Fixed Tare:
Peak value:
Mat. operations:
registration of min./max. value reached during measurement designed to reset display upon non-zero input signal pre-set tare, fixed the display shows only max. or min. value polynome, $1 / x$, logarithm, exponential, power, root, $\sin x$ and mathematic operatin between input - total and divide

EXTERNAL CONTROL

Lock:
Hold:
control keys blocking
display/instrument blocking
Tare:
Resetting MM:
Memory:
Swap:
tare activation/resetting tare to zero
resetting $\mathrm{min} /$ max value
data storage into instrument memory
switching [swapping] between active inputs/outputs [where available]

2.2

OPERATION

The instrument is set and controlled by two control keys located on the front panel. All programmable settings of the instrument are performed in three adjusting modes:

LIGHT Simple programming menu

- contains solely items necessary for instrument setting and is protected by optional number code

PROFI Complete programming menu

- contains complete instrument menu and is protected by optional number code

USER User programming menu

- may contain arbitrary items selected from the programming menu [LIGHT/PROFI], which determine the right (see or change]
- acces without password

All programmable parameters are stored in the EEPROM memory (they hold even after the instrument is switched off).

OMLINK

Complete instrument operation and setting may be performed via OM Link communication interface, which is a standard equipment of all instruments.
The operation program is freely accessible [www.orbit.merret.eu] and the only requirement is the purchase of OML cable to connect the instrument to PC. It is manufactured in version RS 232 and USB and is compatible with all ORBIT MERRET instruments. Another option for connection is with the aid of data output RS 232, RS 485, LAN and USB (without the need of the OML cable). The program OM LINK in "Basic" version will enable you to connect one instrument with the option of visualization and archiving in PC. The OM Link "Standard" version has no limitation of the number of instruments connected.

2.3

OPTIONS

Excitation is suitable for supplying power to sensors and transmitters. It has a galvanic separation.
Comparators are assigned to monitor two limit values with relay output. The user may select limits regime: LIMIT/DOSING/ FROM-TO. The limits have adjustable hysteresis within the full range of the display as well as selectable delay. Reaching the preset limits is signalled by LED and simultaneously by the switch-on of the relevant relay.
Data outputs jare for their rate and accuracy suitable for transmission of the measured data for further projection or directly into the control systems. We offer an isolated RS232 and RS485 with the ASCII/Mesbus/MODBUS/PROFIBUS protocol, CAN and LAN.
Measured data record is an internal time control of data collection. It is suitable where it is necessary to register measured values. Two modes may be used. FAST is designed for fast storage (40 records/s) of all measured values up to 8000 records. Second mode is RTC, where data record is governed by Real Time with data storage in a selected time segment and cycle. Up to 250000 values may be stored in the instrument memory. Data transmis sion into PC via serial interface USB, RS 232/485 and DM Link.

3. INSTRUMENT CONECTION

The instrument supply leads should not be in proximity of the incoming low-potential signals.
Contactors, motors with larger input power should not be in proximity of the instrument.
The leads into the instrument input [measured quantity] should be in sufficient distance from all power leads and appliances. Provided this cannot be secured it is necessary to use shielded leads with connection to ground (bracket E).
The instruments are tested in compliance with standards for use in industrial area, yet we recommend to abide by the above mentioned principles.

MEASURING RANGES

TYPE	INPUT 1	INPUT 2	INPUT 3	INPUT 4	INPUT 5
DC	$\pm 20 / \pm 40 / \pm 80 \mathrm{~V}$		$\pm 30 / \pm 60 / \pm$		$\pm 90 / \pm 180 \mathrm{~mA}$
PM	$\pm 2 / \pm 5 / \pm 10 \mathrm{~V}$				$\pm 5 / 20 / 4 \ldots 20 \mathrm{~mA}$
T/C			J/K/T/E/B/		
OHM	0...100/300 Ω /0...1,5/3/24/30 k				
RTD-Pt	Pt 50/100/500/1 000				
RTD-Cu	Cu 50/100				
RTD-Ni	Ni 1 000/10 000				
DU	Linear potentiometer [min. 500 亿]				

OMX 102DC

TYPE	INPUT 1	INPUT 2	INPUT 3
	$\pm 25 / \pm 50 / \pm 100 \mathrm{~V}$		INPUT 4
DC	$\pm 200 / \pm 400 \mathrm{~V}$		INPUT 5
	Channel 1		$0 \ldots .1 / 5 \mathrm{~A}$
			Channel 2

!

When using RTD or OHM inputs in 2-wire or 3 -wire connection, it is essential connect unused inputs on the terminal board ($\mathrm{M}+\mathrm{N}$ / O+P or D+P). The same applies to Channel 2.

Example connection of a 2-wire sensor with current signal output powered by instrument's excitation

Example connection of a 3 -wire sensor with current signal output powered by instrument's excitation

Example connection of 3 -wire sensor with voltage signal output powered by instrument's excitation

-

SETTING
 PROFI

For expert users
Complete instrument menu
Access is password protected
Possibility to arrange items of the USER MENU
Tree menu structure

SETTING
 LIGHT

For trained users
Only items necessary for instrument setting
Access is password protected
Possibility to arrange items of the USER MENU Linear menu structure

SETTING
 USER

For user operation
Menu items are set by the user [Profi/Light] as per request Access is not password protected Optional menu structure either tree (PROFI) or linear (LIGHT)

4.1

SETTING

The instrument is set and controlled by two control keys located on the front panel. All programmable settings of the instrument are performed in three adjusting modes:

LIGHT Simple programming menu

- contains solely items necessary for instrument setting and is protected by optional number code

PROFI Complete programming menu

- contains complete instrument menu and is protected by optional number code

USER

User programming menu

- may contain arbitrary items selected from the programming menu [LIGHT/PROFI], which determine the right [see or change]
- acces without password

All programmable parameters are stored in the EEPROM memory [they hold even after the instrument is switched off).

Complete instrument operation and setting may be performed via OM Link communication interface, which is a standard equipment of all instruments.
The operation program is freely accessible (www.orbit.merret.eu) and the only requirement is the purchase of OML cable to connect the instrument to PC. It is manufactured in version RS 232 and USB and is compatible with all ORBIT MERRET instruments. Another option for connection is with the aid of data output RS 232 or RS 485 (without the need of the OML cable).

Setting and controlling the instrument is performed by means of two control keys located on the front panel. With the aid of these keys it is possble to browse through the operation menu and to select and set required values.

ON LED is lit
ON LED is flashing - Error message
DFF LED is not lit

Symbols used in the instructions

DC PM DU OHM RTD T/C Indicates the setting for given type of instrument
(DI) values preset from manufacture

symbol indicates a flashing light (symbol)
MI N
inverted triangle indicates the item that can be placed in USER menu
broken line indicates a dynamic item, i.e. it is displayed only in particular selection/version
after pressing the key the set value will not be stored
after pressing the key the set value will be stored
(D) 30
continues on page 30

Setting the decimal point and the minus sign

DECIMAL POINT

Its selection in the setting mode is performed by control keywith transition behind the highest decade, when the data starts flashing. Positioning is performed by (1. For projection of value exceeding 999 the suffix may be set "m" - 0,001, „k" - 1000 or „M" - 100000

THE MINUS SIGN

Setting the minus sign is performed by control key

Control keys functions

KEY	MEASUREMENT	MENU	SETTING NUMBERS/SELECTION
	value of tare [DC, PM] measured resistance (RTD) cold junction compensation [T/C] swapping inputs	back to previous level	move to higher decade
	Tare/Reseting	move to next item	move up
		confirm selection	confirm setting/selection
$<2 \mathrm{~s}$	access into LIGHT menu		

\pm direct access into PROFI menu

$>2 \mathrm{~s}$
0
access into USER menu

Setting items into "USER" menu

- in LIGHT or PROFI menu
- no items permitted in USER menu from manufacture
- on items marked by inverted triangle

item will not be displayed in USER menu
YES
Item will be displayed in USER menu with the option of setting
SHO
item will be solely displayed in USER menu

5. SETTING LIGHT

SETTING LIGHT

For trained users
Only items necessary for instrument setting
Access is password protected
Possibility to arrange items of the USER MENU
Linear menu structure

Preset from manufacture	
Password	"O"
Menu	LIGHT
USER menu	Off
Setting the items	DEF

Type DC	[d] 18
Type 10200	[d] 20
Type PM	[d] 22
Type OHM	[d] 24
Type Pt	[d] 26
Type Cu	[d] 28
Type Ni	[d] 30
Type T/C	[D] 32
Type Du	[d] 34

5. SETTING LIGHT

MEASURING MODE > DC

6. SETTING PROFI

MEASURING MODE > DMX 102DC

5. SETTING LIGHT

MEASURING MODE > PM

5. SETTING LIGHT

MEASURING MODE > OHM

5. SETTING LIGHT

0

RTD-Pt

6. SETTING PROFI

RTD-CU
\wedge
MEASURING MODE

5. SETTING LIGHT

MEASURING MODE > RTD-Ni

5. SETTING LIGHT

MEASURING MODE > T/C

5. SETTING LIGHT

\square

5. SETTING LIGHT

[^0]

5. SETTING LIGHT

6. SETTING PROFI

SETTING PRDFI

For expert users
Complete instrument menu
Access is password protected
Possibility to arrange items of the USER MENU
Tree menu structure

SETTING "PROFI"

PROFI Complete programming menu

- contains complete instrument menu and is protected by optional number code
- designed for expert users
- preset from manufacture is menu LIGHT

Switching over to "PRDFI" menu

$>2 \mathrm{~s}$

- access to PROFI menu
- authorization for access to PROFI menu does not depend on setting under item SER. > MNU.
- password protected access (unless set as follows under the item SER. > N.PA. > PROFI =0)
- access to menu selected under item SER. > MNU. > LIGHT/PROFI
- password protected access [unless set as follows under the item SER. > N.PA. > LIGHT =0)
- for access to LIGHT menu passwords for LIGHT and PROFI menu may be used

6. SETTING PROFI

6.1 SETTING "PROFI" - INPUT

The primary instrument parameters are set in this menu

$C L R$.	Resetting internal values
CFG.	Selection of measuring range and parameters
RTC.	Setting date and time for option with RTC
EXT.	Setting external inputs functions

CLR

Resetting internal values

Tare resetting - Channel A

CAT

Tare resetting on both channels simultaneously

1

Dnly for DC, PM and DU types

6.1.2a SELECTION OF MEASURING RATE

6.1.2a SELECTION OF THE NUMBER OF ACTIVE INPUTS

Selection of the number of active inputs
this menu item is accessible only in the 2 -input version of the device

21 N.
Active inputs 1 and 2

6. SETTING PROFI

SW
 Selection of inputs

 switchingthis menu item is accessible only in the 2 -input version of the device
MAN. Manual inputs switching
inputs switching is controlled by selected key on the front panel or selected external input

AUT. Automatic inputs switching

inputs switching is automatic in a time period set in "T.SW."

SW
 Setting the period for inputs switching

setting the time period for projection of channels in automatic mode ode of inputs switching ["AUT."]
range of the setting: 0,5...99,5 s (step 0,5)
DEF T.SW. $=2 \mathrm{~s}$

6.1.2f SELECTION OF MEASURING RANGE FOR CHANNEL 1

RTD OHM T/C

T/C

I N1 | Measurement without |
| :--- |
| reference thermocouple |

measuring coldjunction at instrumentbrackets

IN 2

Measurement with reference thermocouple
measuring cold junction at instrument brackets with anti-series connected reference thermocouple

EX1 | Measurement without |
| :--- |
| reference thermocouple |

the entire measuring set is working under invaried and constant temperature

EX 2

Measurement with reference thermocouple
when using compensation box

!
 Method and procedure of setting the cold junctions is described in separate chapter on page 82

!

For thermocoule type "B" the items "CO.1" and "C.J.1" are not available

C! 1 Setting temperature of cold junction

range $0 . . .99^{\circ} \mathrm{C}$ with compensation box setting of cold junction compensation is identical both for „Channel 1" and ,Channel 2"
(DEP $=23^{\circ} \mathrm{C}$

RA1
 Offset of the beginning of the measuring range

in cases when it is necessary to offset the beginning of the range by certain value, e.g. while using sensor in measuring head entered directly in Ohm [0...999]
DEF
$=0$

Compensation of 2-wire conduct
for measurement accuracy it is necessary to perform compensation of conduct always in case of 2 -wire connection
prior confirmation of the displayed prompt "YES" it is necessary to substitute the sensor at the end of the conduct by a short-circuit
DE = 0

T. 2
 Selection of „instrument"

 typeselection of particular type of "instrument" is bound to relevant dynamic items

first thermocouple has to be connected to "Channel 1", because that is where the temperature for cold junction compensation is taken
in menu "Channel 2* the temperature of cold junction compensation is not set [it is adopted from ,Channel 1"]

*
Following settings are identical with menu items for "IN. $1^{\prime \prime}$

RTC. Setting the real time clock [RTC]

format 23.59.59
DAT. Date setting
format DD.MM.RR

6. SETTING PROFI

EXT	External input function selection
OFF	Input is off
HLD.	Activation of HOLD
B PA	Activation of locking access into programming menu
LIGHT/PROFI	
TRA	Tare activation for Channel 1
\ulcorner TRB	Tare activation for Channel 2
CTA	Tare resetting for Channel 1
\ulcorner CTB	Tare resetting for Channel 2
N M M.	Resetting min/max value
$\begin{aligned} & \text { Lemory for opti } \\ & \text { me } \end{aligned}$	Activation of measured data record in instrument on FAST/RTC
$\ulcorner\quad-\quad \text { C.M. }$	Clearing memory for option FAST/RTC
$\ulcorner\quad \overline{S W P} \cdot$	Swapping between analogue inputs/outputs
Swapping between analogue outputs [configuration: $1 x$ input > $2 x$ output]	
Swapping between analogue inputs [configuration: 2 x input > 1 x output)	
DEF EX, $1>$ HLD.	
DEF EX. 2 > B.PA.	
*	
Identical procedure to the one shown above can also be applied to ,EX.2"	

6.2 SETTING "PROFI" - CHANNELS

In this section of the menu input parameters are set

Setting of parameters of measuring input "Channel 1 " Setting of parameters of measuring input "Channel 2"

MFN
Setting of parameters of mathematical functions

Selecting the input for evaluating the Min/Max

	SEA	Setting display projection
MI A	Setting display projection for minimum value of input	
signa		

range of the setting: -99M...999M
DE \qquad

Setting display projection for maximum value of
input signal
range of the setting: -99M...999M

$$
\text { DEP }=100
$$

SEA

Setting "Fixed tare" value
setting is designed for the event when it is necessary to firmly shift the beginning of the range by known size
when setting (P.T.A $\neq 0$) is in effect, display does not show the "T" symbol
range of the setting: -99M...999M
DEF
$=0$

FI A

Selection of digital filters
at times it is useful for better user projection of data on display to modify it mathematically and properly, wherefore the following filters may be used

arithmetic average from given number „C. A" of measured values
range 2... 100

FLO. Selection of floating filter

floating arithmetic average from given number _C. A" of measured data and updates with each measured value
range $2 \ldots 30$

EXP.	Selection of exponential filter

integration filter of first prvniho grade with time constant „C. A" measurement
range $2 \ldots 100$
RND. Measured value rounding
is entered by any number, which determines the projection step [e.g: "C. $A^{\prime \prime}=2,5>$ display $0,2.5,5, .$.]

this menu item is always displayed after selection of particular type of filter
(DF)
$=2$

$!$

Setting is identical with channel .C. B"

Selection of decimal point
the instrument allows for classic projection of a number with positioning of the DP as well as projection with floating DP, allowing to display a number in its most exact form „FL.P."

Setting is identical with channel „C. B"

LOA

Selection of storing data into instrument memory
by selection in this item you allow to register values into instrument memory
another setting in item "OUT. > MEM."
[not in standard experiment]

| NO |
| :---: | | Measured data is not stored |
| :---: |
| ALL | | Measured data is stored in |
| :--- |
| memory |

| Only data measured within |
| :---: | :--- |
| in memory set interval is stored |

OUT	Only data measured outside in memory

DEF $=-99 \mathrm{M}$
$\square T O A, \begin{aligned} & \text { Setting the final interval } \\ & \text { value }\end{aligned}$ range of the setting: -99M...999M

Description position

DE A Setting projection of

 description3 characters can be added to standard numerical formats
setting is realised using modified ASCII code, where upper number defines position of the character, bottom line at the first position displays the charater and at the last two positions show the code of the character in interval 0... 95.
description is cancelled by code 000

```
RTD T/C DFF = 'C
DC PM DU OHM DEF=none
```


I

Table of signs on page 86

$!$

Setting is identical with channel .C. B"

6. SETTING PROFI

Selection of input for calculation of mathematic function
selection of value from which the mathematic function will be calculated

NO	Mathematic functions are off
C. A	From "Channel A"
F.A	From "Channel A" after modification by digital filter
C.B.	From "Channel B"
F.B	From "Channel B" after modification by digital filter
$\mathrm{ACH} .$	From "Channels A, B"
A.F.	From "Channels A, B," after modification by digital filters

MFN. Selection of mathematic

 functionsOn selecting „From chan. A / B " in item „V.MF."
MUL. Multinominal
$A x^{5}+B x^{4}+C x^{3}+D x^{2}+E x+F$
$1 / M^{1 / x}$
$\frac{A}{x^{5}}+\frac{B}{x^{4}}+\frac{C}{x^{3}}+\frac{D}{x^{2}}+\frac{E}{x}+F$
LOG. Logarithm
$A \times \ln \left(\frac{B x+C}{D x+E}\right)+F$

$A \times e^{\left(\frac{B x+C}{D x+E}\right)}+F$
POW. Power
$A \times(B x+C)^{(D x+E)}+F$
RT. Root
$A \times \sqrt{\frac{B x+C}{D x+E}}+F$

On selecting "From chan. $\mathrm{A}+\mathrm{B}$ " in item "V.MF."
SUM Sum of the values from channels [inputs]
$[A \times K A+B \times K B+C \times K C+\square \times K D] \times E+F$

DI V.	Quotient of values from channels (inputs]

$[A \times K A+C \times K C] /[B \times K B+D \times K D] \times E+F$

Setting constants for calculation of mat.functions

- this menu is displayed only after selection of given mathematic function

FOM
 Selection of decimal

 pointthe instrument allows for classic projection of a number with positioning of the DP as well as projection with floating DP, allowing to display a number in its most exact form „FL.P."

LOM

Selection of storing data into instrument memory
by selection in this item you allow to register values into instrument memory
another setting in item "OUT. > MEM."
[not in standard experiment]

I N

Only data measured within the set interval is stored
in memory

in memory

range of the setting: -99M...999M
DF = -99M

DEF
$=999 \mathrm{M}$

DEM

Setting projection of

 description3 characters can be added to standard numerical formats
setting is realised using modified ASCII code, where upper number defines position of the character, bottom line at the first position displays the charater and at the last two positions show the code of the character in interval 0... 95.
description is cancelled by code 000

```
RTD T/C DFF = 'C
DC PM DU OHM DE: none
```


!

Table of signs on page 86

I MM.

Selection of evaluation of $\min /$ max value
selection of value from which the min/max value will be calculated

Evaluation of min/max value is off

C.A

From "Channel A"

F.A

From "Channel A" after digital filters processing

MFN
From "Mathematic functions"
6.3 SETTING „PROF" - OUTPUTS

6.3.2a

REW.

Selection of the mode of data logging
selection of the mode in the event of full instrument memory

Rewriting values prohibited

Rewriting values permitted, the oldest get rewritten by

RTC

The lowest recording rate possible is once a day, the highest is every second. Under exceptional circumstances it is possible to set the rate to 8 times per second by entering the recording period as 00:00:00. However, this mode is not recommended due to the memory overload. Recordings are realised in a timeframe of one day and are repeated periodically every following day. Recordings can take place either inside or outside of selected time intervals. The duration of re-writing can be determined by the number of channels recorded as well as by the recording rate.

Start of data logging into instrument memory

- time format HH.MM.SS

time format HH.MM.SS
PER. $\begin{aligned} & \text { Period of data logging into } \\ & \text { instrument memory }\end{aligned}$
determines the period in which values will be logged in an interval delimited by the time set under items START and STOP
time format HH.MM.SS
records are made on a daily basis in selected interval and period
item not displayed if "SAVE" is selected in menu „INP. > EXT. > LO.A"
6.3.2c SETTING DATA LOGGING INTO INSTRUMENT MEMORY - FAST

FAST

The memory operates on the basis of memory oscilloscope. Select an area of 0... 100% of the memory capacity [100% represents 8192 individual recordings for a single channel measurement]. This area is filled cyclically up to the point when the recording starts [activated by the front panel button or by an external input]. When the remaining memory capacity fills up the recording stops. A new recording is possible after the deletion of the latest recording. It is possible to abort a recording before its completion by reading out the data.

TRG.
 Setting logging data into inst. memory

logging data into inst. memory is governed by the folowing selection, which determines how many percent of the memory is reserved for data logging prior to initiation of trigger imputse initialization is on ext. input or button setting in range $1 . . .100 \%$
when setting 100%, datalogging works in the mode ROLL > data keep getting rewritten in cycles

1. Memory initialization

clear memory (extinput, button)
LED "M" flashes, after reading TRIGGER [\%] memory is permanently shining. In ROLL flashes constantly.

2. Triggering

external input, button
after the memory LED is full "M" turns off
in the ROLL mode the trigger ends datalogging and LED turns off

3 . Termination

ext. input, button or reading data via RS

III

Selection evaluation of limits

- selection of value from which the limit will be evaluated

| NO |
| ---: | | Limit evaluation is off |
| :--- |
| C.A |

F.A
"Chit evaluation from A "

"Cimit evaluation from
filters processing
filters processing

MFN.	Limit evaluation from "Mathematic functions"
M1 N.	Limit evaluation from "Min. value"
MAX	Limit evaluation from "Max. value"

I

Setting is identical for „L. 2"

Selection the type of limit

HYS
Limit is in mode "Limit, hysteresis, delay"
for this mode the parameters of "L. 1" are set, at which the limit will shall react, "H. 1" the hysteresis range around the limit [LIM $\pm 1 / 2$ HYS] and time "T. 1" determining the delay of relay switch-on

for this mode the parameters are set for interval "ON.1" the relay switch-on and "OF.1" the relay switch-off

DOS
 Dose limit [periodic]

for this mode the parameters are set for "P. 1" determining the limit value as well as its multiples at which the output is active and "T. 2" indicating the time during which is the output active

$E R R$. Error indication

output is active when error message is on

!

Setting is identical for , L. 2^{\prime}

TYP.

Selection of type of output

CLO.

Output switches on when condition is met

OPE
Output switches off when condition is met

!

Setting is identical for "L. 2"

ADD
Setting instrument address
setting in range: $0 . . .31$
DEF = 00

A MO. Setting instrument address - MODBUS
setting in range: 1... 247
DE
$=01$
setting in range: 1... 127
(D)
$=19$

6.3.4c SELECTION OF GSD FILE FORMAT

PROT.	Selection of the type of analog output
ASC.	Data protocol ASCII
MBS .	Data protocol DIN MessBus
$\stackrel{\Gamma}{\ulcorner } \quad \begin{array}{ll} \ulcorner & \text { MOD. } \\ - \\ \text { option is availa } \end{array}$	Data protocol MODBUS - RTU ble only for RS 485

6. SETTING PROFI

| A1

Selection evaluation analog output
selection of value from which the analog output will be evaluated

NO	$A D$ evaluation is off
C.A	$A D$ evaluation from "Channel A"
F.A	$A O$ evaluation from "Channel A" after digital
filters processing	
C.B	$A D$ evaluation from "Channel B"
F.B	$A D$ evaluation from "Channel B" after digital

filters processing

M F N	AO evaluation from "Math. functions"
MI N	$A O$ evaluation from
MAX	$A 0$ evaluation ff

I

Setting is identical also for .A. 2""

A . 1 Selection of the type of analog output

120 Type: $0 . . .20 \mathrm{~mA}$
E4T Type: $4 . . .20 \mathrm{~mA}$ with indication

- with broken loop detection and indication of error statement ($<3,6 \mathrm{~mA}$)

4 T | Type: $4 \ldots 20 \mathrm{~mA}$ |
| :--- |
| with indication |

with broken loop detection ($<3,6 \mathrm{~mA}$)
E. 4 Type: $4 \ldots .20 \mathrm{~mA}$

- with indic. of error statement ($<3,6 \mathrm{~mA}$)

14 Type: $4 \ldots 20 \mathrm{~mA}$

U 2 Type: $0 . . .2 \mathrm{~V}$
U 5 Type: $0 \ldots 5$ V
u1 0 Type: $0 . . .10 \mathrm{~V}$
-10
Type: $\pm 10 \mathrm{~V}$

Setting is identical also for "A. 2"

A. 0

Setting the analog output range
analog output is isolated and its value corresponds with displayed data. It is fully programmable, i.e. it allows to assign the $A D$ limit points to two arbitrary points of the entire measuring range

Setting the beginning of the frequency range for
range of the setting: $0,2 \ldots 2200 \mathrm{~Hz}$
DEF $=\square$ [-4D - RTD, T/C)

range of the setting: 0,2 $\ldots 2200 \mathrm{~Hz}$
DEF $=100[199-$ RTD, T/C]

range of the setting: -99M...999M
DFF = \square (-4D - RTD, T/C)
A H1 Assigning the display value to the end of the $A O$ range
range of the setting: -99M...999M
DEF = 100 ($199 \cdot$ RTD, T/C)

!

Setting is identical also for .A. 2"

B .L	Backlight
NO	Backlight is off
YES	Backlight is on
TIM.	Backlight is time limited
a key st	roke the backlight is active for

6.4 SETTING "PROFI" - SERVICE

	RESTORE	
JOBS PERFORMED	CALIBRATION	
SETTING		
cancels USER menu rights	\checkmark	\checkmark
deletes table of items order in USER - LIGHT menu	\checkmark	\checkmark
adds items from manufcture to LIGHT menu	\checkmark	\checkmark
deletes data stored in FLASH	\checkmark	\checkmark
cancels or linearization tables	\checkmark	\checkmark
clears tare	\mathbf{V}	$\mathbf{\checkmark}$
restore manufacture calibration	\checkmark	\mathbf{x}
restore manufacture setting	\mathbf{x}	\mathbf{V}

RESTORE

CALIBRATION SETtING

JOBS PERFORMED

RES . Restoration of manufacture setting

in the event of error setting or calibration, manufacture setting may be restored

RE C. Restoration of manufacture

 calibration of the instrumentprior executing the changes you will be asked to confirm you selection "YES"

SET.

Restoration of instrument manufacture setting

FI R. Restoration of instrument manufacture setting
generating the manufacture setting for currently selected type of instrument [items marked DEF)
\square Restoration of instrument user setting
generating the instrument user setting, i.e. setting stored under SER./RES./SAV.

SAV. Save instrument user setting

storing the user setting allows the operator to restore it in future if needed

!

After restoration the instrument switches off for couple seconds

6. SETTING PROFI

6.4 .3

CALIBRATION - INPUT RANGE
DU

Kalibrace vstupního rozsahu
when "C.L.1" is displayed, move the potentiometer traveller to the required minimum position and confirm by ,Enter", calibration is confirmed by "YES"
when "C.H.1" is displayed, move the potentiometer traveller to required maximum position and confirm by ,Enter", calibration is confirmed by "YES"

!

This setting is identical also for „CH.2"

Selection of instrument menu language version

CZ

Instrument menu is in Czech

ENG
Instrument menu is in English
6.4 .5

SETTING NEW ACCESS PASSWORD

Setting new password for access to LIGHT and PROFI
this option allows to change the numeric code,
which blocks the access into LIGHT and PROFI
menu.
numerci code range: $0 . . .999$
universal passwords in the event of loss:
LIGHT Menu > .177"
PROFI Menu > $915^{\text {"u }}$

Projection of instrument SW version
display shows type identification of the instrument, SW number, SW version and current input setting (Made)
if the SW version reads a letter on first position, it is a customer SW

SETTING USER

For user operation
Menu items are set by the user (Profi/Light] as per request

Access is not password protected

Optional menu structure either tree (PROFI) or linear (LIGHT)

7.0

 SETTING ITEMS INTO "USER" MENU- USER menu is designed for users who need to change only several items of the setting without the option to change the primary instrument setting (e.g. repeated change of limit setting]
- there are no items from manufacture permitted in USER menu
- on items indicated by inverse triangle LI M 1
- setting may be performed in LIGHT or PROFI menu, with the USER menu then overtaking the given menu structure

Setting

Setting sequence of items in "USER" menu

In compiling USER menu from active LIGHT menu the items (max. 10) may be assigned a sequence, in which they will be projected in the menu
setting projection sequence

Example of ranking the order of menu items in the "USER" menu

In this example we want to have a direct access to menu items Limit 1 and Limit 2 (example show is for the Light menu, but can equaly be used in the Profi menu].

The result of this setting is that when the Θ button is pressed, the display will read "L.1". By pressing button you confirm your selection and then you can set the desired limit value, or by pressing the © button you can go to setting of "L.2" where you can proceed identically as with Limit one.

You can exit the setting by pressing the button by which you store the latest setting and pressing the (4) button will take you back to the measuring mode

Reference thermocouple

WITH REFERENCE THERMOCOUPLE

- a reference thermocouple may be located in the same place as the measuring instrument or in place with stable temperature/ compensation box
- when measuring with reference thermocouple set CO1 in the instrument menu to 1 N 2 or $\mathrm{E} \times 2$
- when using a thermostat [a compensation box or environment with constant temperature] set in the instrument menu C) 1 its temperature (applies for setting CO1 to E X 2)
- if the reference thermocouple is located in the same environment as the measuring instrument then set in the instrument menu CO1 to $~$ N2. Based on this selection the measurement of the ambient temperature is performed by a sensor located in the instrument terminal board

WITHOUT REFERENCE THERMOCOUPLE

- inaccuracy originating from the creation of dissimilar thermocouples on the transition point terminal/conductor of the thermocouple is not compensated for in the instrument
- when measuring without reference thermocouple set CO1 in the instrument menu tol N1 or E X1
- when measuring temperature without reference thermocouple the error in measured data may be as much as $10^{\circ} \mathrm{C}$ [applies for setting CO1 to E X1]

ERROR	CAUSE	ELIMINATION
ED:	Number is too small [large negative] to be displayed	change DP setting, channel constant setting
ED:	Number is too large to be displayed	change DP setting, channel constant setting
$E T_{1}$	Number is outside the table range	increase table values, change input setting [channel constant setting]
ET:	Number is outside the table range	increase table values, change input setting [channel constant setting]
El:	Input quantity is smaller than permitted input quantity range	change input signal value or input (range) setting
El-	Input quantity is larger than permitted input quantity range	change input signal value or input (range) setting
$E H W$.	A part of the instrument does not work properly	send the instrument for repair
EEE	Data in EEPROM corrupted	perform restoration of manufacture setting, upon repeated error statement send instrument for repair
EDT.	Data in EEPROM outside the range	perform restoration of manufacture setting, upon repeated error statement send instrument for repair
$E C L$	Memory was empty (presetting carried out)	upon repeated error statement send instrument for repair, possible failure in calibration
E.OU.	Analogue input/output current loop disconnected	check wire connection

The instruments communicate via serial line RS232 or RS485．For communication they use the ASCll protocol．Communication runs in the following format：

ASCII：$\quad 8$ bit，no parity，one stop bit
DIN MessBus： 7 bit，even parity，one stop bit

The transfer rate is adjustable in the instrument menu．The instrument address is set in the instrument menu in the range of $0 \div 31$ ．The manufacture setting always presets the ASCll protocol，rate of 9600 Baud，address 00 ．The type of line used－RS232 ／RS485－is determined by an output board automatically identified by the instrument．
The commands are described in specifications you can find at www．orbit．merret．eu or SW OM Link．

DETAILED DESCRIPTION DF COMMUNICATION VIA SERIAL LINE

EVENT	TYPE	PRO	toco	TRANSM	ITT											
Data solicitation［PC］		ASCI		\＃	A	A	＜CR									
		Mess	sus	No－data	is t	ted	perma	ntly								
		ASCII		\＃	A	A	＜CR									
		Mess	sbus	＜SADR＞	＜E											
Data transmission（instrument）		ASCII		＞	\square	（口）	（口）	（D）	＜CR＞							
		Mess	sus	＜STX＞	\square	（D）	（口）	（D）	＜ETX＞	＜BCC＞						
	$\stackrel{\square}{0}$	ASCII		＞	\square	（D）	［D］	＜CR＞								
		Mess	sBus	＜STX＞	\square	（口）	（口）	（D）	（D）	（D）	（D）	（口）	（D）	（D）	＜ETX＞	＜BCC＞
$\begin{aligned} & \text { Confirmation of data acceptannce } \\ & \text { (PC) - OK } \\ & \hline \end{aligned}$				＜DLE＞	1											
Confirmation of data acceptance ［PC］－Bad	$\stackrel{\bullet}{\square}$	Mess	Bus	＜NAK＞												
Sending address（PC）prior command				＜EADR＞	$<E$											
Confirmation of address（instrument）				＜SADR＞	$<E$											
Command transmission（PC）	N	ASCI		\＃	A	A	N	P	（D）	（D）	（D）	（口）	（D）	（D）	［口］	＜CR＞
		Mess	sus	＜STX＞	\＄	N	P	（D）	＜ETX＞	＜BCC＞						
	$\stackrel{\square}{0}$	ASCI		\＃	A	A	N	P	（D）	＜CR＞						
		Mess	sus	＜STX＞	\＄	N		（口）	（D）	（D）	（D）	（D）	（D）	（D）	＜ETX＞	＜BCC＞
Command confirmation［instrument）		$\overline{\bar{j}}$	OK	$!$	A	A	＜CR									
	N్N			？	A	A	＜CR									
		Mess	sbus	No－data	is \dagger	ted	perma	ntly								
		亏	OK	！	A	A	$<\mathrm{CR}$									
			Bad	？	A	A	＜CR									
		is 0	OK	＜DLE＞	1											
		$\sum^{\circ} \mathrm{\infty}$		＜NAK＞												
Instrument identification				\＃	A	A	1	Y	＜LR＞							
HW identification				\＃	A	A	1	Z	＜LR＞							
One－time transmission				\＃	A	A	7	\times	＜LR＞							
Repeated transmission				\＃	A	A	8	\times	＜CR＞							

SING	RANGE		DESCRIPTION
\#	35	$23_{\text {H }}$	Command beginning
A A	0... 31		Two characters of instrument address [sent in ASCll - tens and units, e.g. "O1", " 99 " universal
<CR>	13	OD_{H}	Carriage return
<SP>	32	$2 \mathrm{O}_{\mathrm{H}}$	Space
N, P			Number and command - command code
\square			Data-usually characters "0"..." $\mathrm{B}^{\prime \prime}$ "-", "."; (D) - dp. and (.) may prolong data
R	$30_{H} \ldots 3 \mathrm{~F}_{\mathrm{H}}$		Relay and tare status
$!$	33	21_{H}	Positive confirmation of command [ok]
?	63	$3 \mathrm{~F}_{\mathrm{H}}$	Negative confirmation of command (point)
>	62	$3 \mathrm{E}_{\mathrm{H}}$	Beginning of transmitted data
<STX>	2	02 ${ }^{\text {H }}$	Beginning of text
<ETX>	3	03 ${ }_{\text {H }}$	End of text
<SADR>	adresa $+6 \mathrm{O}_{\mathrm{H}}$		Prompt to send from address
<EADR>	$\text { adresa }+4 \mathrm{O}_{\mathrm{H}}$		Prompt to accept command at address
<ENQ>	5	$\mathrm{O5}_{\mathrm{H}}$	Terminate address
<DLE>1	1649	$10_{H} 31{ }_{H}$	Confirm correct statement
<NAK>	21	$15_{\text {H }}$	Confirm error statement
<BCC>			Check sum -XOR

RELAY, TARE

SIGN	RELAY 1	RELAY 2	TARE	CHANGE
P	0	0	0	0
\square	1	0	0	0
R	0	1	0	0
S	1	1	0	0
T	0	0	1	0
U	1	0	1	0
V	0	1	1	0
W	1	1	1	0

Relay status is generated by command \#AABX <CR>. The instrument immediately returns the value in the format $>\mathrm{HH}<C \mathrm{CR}>$, where HH is value in HEX format and range $\mathrm{OO}_{\mathrm{H}} \ldots \mathrm{FF}$. The lowest bit stands for "Relay 1", the highest for "Relay 2"

The instrument allows to add two descriptive characters to the classic numeric formats (at the expense of the number of displayed places]. The setting is performed by means of a shiffed ASCII code. Upon modification the first two places display the entered characters and the last two places the code of the relevant symbol from 0 to 95 . Numeric value of given character equals the sum of the numbers on both axes of the table.
Description is cancelled by entering characters with code 00

	0	1	2	3	4	5	6	7		0	1	2	3	4	5	6	7	
0		7	1.	4	I	!	$\bar{\square}$,	0		!	"	\#	\$	\%	\&	'	
8	;	;	*	+	,	-		,	8	1	1	*	+	,	-	.	/	
16	0	1	2	3	4	5	σ	7	16	0	1	2	3	4	5	6	7	
24	8	3	41	ir	;	;	-	?	24	8	9	VA	Vr	<	=	>	?	
32	2	8	g	L	IJ	ε	F	6	32	@	A	B	C	D	E	F	G	
40	H	I	'	n	L	A	is	5	40	H	1	J	K	L	M	N	O	
48	ρ	0	p	5	T	U'	$\\|^{\prime}$	is	48	P	Q	R	S	T	U	V	W	
56	\because	\because	\square^{\prime}	τ	'	〕	\square	-	56	X	Y	Z	[\backslash]	\wedge	-	
64	'	0	6	c	od	\mathscr{L}	F	6	64	-	a	b	c	d	e	f	g	
72	h	2	'	\%	;	m	n	0	72	h	i	i	k	I	m	n	\bigcirc	
80	ρ	\bigcirc	r	\pm	ε	\checkmark	*	*	80	p	q	r	s	t	-	v	w	
88	\because	\because	I	\because	9	;-	0		88	x	y	z	\{	\|	\}	\sim		

INPUT - OMX 102UNI

No. of inputs:	up to 2		
Range:	$\pm 90 \mathrm{~mA}$	$<200 \mathrm{mV}$	Input 5
	$\pm 180 \mathrm{~mA}$	$<200 \mathrm{mV}$	Input 5
	$\pm 30 \mathrm{mV}$	$>10 \mathrm{MQ}$	Input 3
	$\pm 60 \mathrm{mV}$	$>10 \mathrm{M} \Omega$	Input 3
	$\pm 1000 \mathrm{mV}$	> 10 MR	Input 3
	$\pm 20 \mathrm{~V}$	1,25 M Ω	Input1
	$\pm 40 \mathrm{~V}$	1,25 M Ω	Input 1
	$\pm 80 \mathrm{~V}$	1,25 M Ω	Input 1
			PM
Range:	$\pm 5 \mathrm{~mA}$	$<200 \mathrm{mV}$	Input 5
	$\pm 20 \mathrm{~mA}$	$<200 \mathrm{mV}$	Input 5
	4... 20 mA	$<200 \mathrm{mV}$	Input 5
	$\pm 2 \mathrm{~V}$	> $10 \mathrm{M} \mathrm{\Omega}$	Input 1
	$\pm 5 \mathrm{~V}$	1,25 M	Input 1
	$\pm 10 \mathrm{~V}$	1,25 M Ω	Input 1

Range:	$0 \ldots 100 \Omega$
	$0 \ldots 300 \Omega$
	$0 \ldots 1,5 \mathrm{k} \Omega$
	$0 \ldots 3,0 \mathrm{k} \Omega$
	$0 \ldots 24,0 \mathrm{k} \Omega$
	$0 \ldots 30,0 \mathrm{k} \Omega$
Connection:	2,3 or 4 -wire

EU \cdot Pt xxxx	$-50^{\circ} \ldots 450^{\circ} \mathrm{C}$
US•Pt 100	$-50^{\circ} \ldots 450^{\circ} \mathrm{C}$
RU•Pt 50	$-200^{\circ} \ldots 1100^{\circ} \mathrm{C}$
RU•Pt 100	$-200^{\circ} \ldots 450^{\circ} \mathrm{C}$
Cu $100 / 4280$	$-200^{\circ} \ldots 200^{\circ} \mathrm{C}$
Cu $100 / 4260$	$-50^{\circ} \ldots .200^{\circ} \mathrm{C}$
Ni xxxx	$-50^{\circ} . .250^{\circ} \mathrm{C}$

Typ Pt: $\quad E U>100 / 500 / 1000 \Omega$, with $3850 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
US > 100Ω, with $3920 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
$\mathrm{RU}>50 / 100 \Omega$ with $3910 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Typ Ni:
Typ Cu:
Connection: $\quad 2,3$ or 4 -wire
T/C
Type:

$\rfloor[\mathrm{Fe}-\mathrm{CuNi}]$
K (NiCr-Ni)
T (Cu-CuNi)
E (NiCr-CuNi]
B (PtRh30-PtRh6)
S (PtRh10-Pt)
R [Pt13Rh-Pt]
N [Omegalloy]
L [Fe-CuNi]

$-100^{\circ} \ldots 900^{\circ} \mathrm{C}$ $-100^{\circ} . .1300^{\circ} \mathrm{C}$ $-200^{\circ} . .400^{\circ} \mathrm{C}$ $-100^{\circ} \ldots 800^{\circ} \mathrm{C}$ $700^{\circ} . .1820^{\circ} \mathrm{C}$ $100^{\circ} . .1760^{\circ} \mathrm{C}$ $100^{\circ} . .1760^{\circ} \mathrm{C}$ - $0^{\circ} . .1300^{\circ} \mathrm{C}$ $-100^{\circ} . .900^{\circ} \mathrm{C}$

INPUT - OMX 102DC

No. of inputs:
Range:

$\pm 1 \mathrm{~A}$	$<200 \mathrm{mV}$	Input 5
$\pm 5 \mathrm{~A}$	$<200 \mathrm{mV}$	Input 5
$\pm 25 \mathrm{~V}$	$1,25 \mathrm{M} \mathrm{\Omega}$	Input 1
$\pm 50 \mathrm{~V}$	$1,25 \mathrm{M} \mathrm{\Omega}$	Input 1
$\pm 100 \mathrm{~V}$	$1,25 \mathrm{M} \mathrm{\Omega}$	Input 1
$\pm 200 \mathrm{~V}$	$1,25 \mathrm{M} \mathrm{\Omega}$	Input 1
$\pm 400 \mathrm{~V}$	$1,25 \mathrm{M} \mathrm{\Omega}$	Input 1

PROJECTION
Display:
Projection
Decimal point:
LCD with backlight,
2×3 characters $+2 \times$ description (3 characters)
-99M...999M adjustable - in menu

INSTRUMENT ACCURACY

TK:
Přesnost:
Accuracy of cold
junction measur::
Rate:
Přetizítelnost:
Linearisation:
Digital filters: Averaging, Floating average, Exponential filter, Rounding
Comp. of conduct: max. $40 \Omega / 100 \Omega$ RTD
Comp. of cold junc.: adjustable T/C
$0^{\circ} . .99^{\circ} \mathrm{C}$ or automatic
Functions: Tare-display resetting Hold - stop measuring [at contact]
Lock - control key locking
MM - min/max value
Mathematic functions
OM Link:
Watch-dog:
company communication interface for setting, operation and update of instrument SW
reset after 400 ms
at $25^{\circ} \mathrm{C}$ and 40% of r.h.

COMPARATOR

Type:

Mode:
Limits:
Hysteresis:
Delay:
Výstupy:
Relay:
digital, adjustable in menu, response time < 50 ms Hyster, F-T, Dosing, Error 999, resp -99M...999M 0...999, resp. 999 k $0 . . .99,9$ s $2 \times$ relays with switch-on contact [Form A] $1 / 8$ HP 277 VAC, 1/10 HP 125 V, Pilot Duty D300

DATA OUTPUTS

Protocols:
Data format:

Rate:

RS 232:
RS 485:

PROFIBUS
Ethernet:

USB
ASCII, DIN MessBus, MODBUS, PROBUS 8 bit + no parity + 1 stop bit [ASCII] 7 bit + even parity + 1 stop bit (MessBus)
600... 230400 Baud 9600 Baud... 12 Mbaud [PROFIBUS] 1 Mbaud [CAN]
isolated, two-way communication isolated, two-way communication, addressing (max. 31 instruments) Data protocol SIEMENS 10/100BaseT, secure communication, POP3, ftp, http

ANALOG OUTPUTS

Type:

Non-linearity:
TC:
Rate:
Voltage:
Curernt:

Freqency:
isolated, dual, programmable with 16 bits D/A convertor, analogoutput corresponds with displayed data, type and range are adjustable 0,1\% of range
$15 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
response to change of value $<1 \mathrm{~ms}$
$0 . .2 \mathrm{~V} / 5 \mathrm{~V} / 10 \mathrm{~V} / \pm 10 \mathrm{~V}$
0...5/20 mA/4... 20 mA - compensation of conduct to $500 \Omega / 12 \mathrm{~V}$ isolated, programmable, open collector with the option of external supply (max. 40V) vie intervnal resistance [5k6], 0,2 ...2200 Hz

MEASURED DATA RECORD

Type RTC:

Type FAST:

Transmission:
time-controlled logging of measured data into instrument memory, allows to log up to 250000 values
fast data logging into instrument memory, allows to \log up to 8000 values at a rate of 40 records/s
via USB or data output RS 232/485 or via OM Link

EXCITATION

Adjustbale $\quad 5 / 12 / 17 / 24 \mathrm{VDC}$, max. $2,5 \mathrm{~W}$, isolated

POWER SUPPLY

Options:
$10 . . .30 \vee \mathrm{AC} / \square C$, max. $13,5 \mathrm{VA}, \mathrm{PF} \geq 0,4$, $\mathrm{I}_{\mathrm{STP}}<40 \mathrm{~A} / 1 \mathrm{~ms}$, isolated

- fuse inside (T 4000 mA)
$80 . . .250 \vee \mathrm{AC} / \mathrm{DC}$, max. $13,5 \mathrm{VA}, \mathrm{PF} \geq 0,4$, $\mathrm{I}_{\mathrm{STP}}<40 \mathrm{~A} / 1 \mathrm{~ms}$, isolated
- fuse inside (T 630 mA]

MECHANIC PROPERTIES

Material:
Dimensions:
Installation:

PA 66, incombustible UL 94 V-I, blue $113 \times 98 \times 35 \mathrm{~mm}$ to DIN rail, width 35 mm

OPERATING CONDITIONS

Connection: connector terminal board, conductor cross-section $<1,5 \mathrm{~mm}^{2} /<2,5 \mathrm{~mm}^{2}$
Stabilisation period: within 15 minutes after switch-on
Working temp.: $\quad-20^{\circ} \ldots 60^{\circ} \mathrm{C}$
Storage temp.: $\quad-20^{\circ} \ldots 85^{\circ} \mathrm{C}$
Cover: IP20
Construction: safety class I
Overvoltage cat.: EN 61010-1, A2
Dielectric strength: 4 kVAC after 1 min between supply and input 4 kVAC after 1 min between supply and data/analog output 4 kVAC after 1 min between supply and relays 3,75 kVAC after 1 min between input and data/analog output $3,75 \mathrm{kVAC}$ after 1 min between inputs
Insulation resist.: for pollution degree II, measurement cat. III supply, input, output > 600 V [ZI), 300 V (DI)
EMC: EN 61326-1

Seismic resistance: IEC 980: 1993, par. 6

Front view

Installation to DIN rail of 35 mm width

Side view

DMX 102UNI

DC

Type
Manufacturing No.
Date of sale

A guarantee period of 60 months from the date of sale to the user applies to this instrument.
Defects occuring during this period due to manufacture error or due to material faults shall be eliminated free of charge.

For quality, function and construction of the instrument the guarantee shall apply provided that the instrument was connected and used in compliance with the instructions for use.

The guarantee shall not apply to defects caused by:

> - mechanic damage

- transportation
- intervention of unqualified person incl. the user
- unavoidable event
- other unprofessional interventions

The manufacturer performs guarantee and post.guarantee repairs unless provided for otherwise.

[^1]
Company:

Manufactured:

ORBIT MERRET, spol. s r.o.
Klánova 81/141, 14200 Prague 4, Czech Republic, IDNo.: 00551309

ORBIT MERRET, spol. s r.o.
Vodňanská 675/30, 19800 Prague 9, Czech Republic
declares at its explicit responsibility that the product presented hereunder meets all technical requirements, is safe for use when utilised under the terms and conditions determined by ORBIT MERRET, spol.s r.o. and that our company has taken all measures to ensure conformity of all products of the types referred-to hereunder, which are being brought out to the market, with technical documentation and requirements of the appurtenant Czech statutory orders.

Product: Programmable panel instrument

Type OMX 102

Version: $\quad D C, U N I, ~ P W R, ~ U Q C, T$

Thas been designed and manufactured in line with requirements of:

Statutory order no. 17/2003 Coll., on low-voltage electrical equipment [directive no. 73/23/EHS]
Statutory order no. 616/2006 Coll., on electromagnetic compatibility [directive no. 2004/108/EHS]

The product qualities are in conformity with harmonized standard:

El. safety:
EMC:

EN 61010-1
EN 61326-1
Electronic measuring, control and laboratory devices - Requirements for EMC "Industrial use" EN 50131-1, chap. 14 and chap. 15, EN 50130-4, chap. 7, EN 50130-4, chap. 8, (EN 61000-4-11, ed. 2], EN 50130-4, chap. 9 (EN 61000-4-2), EN 50130-4, chap. 10, (EN 61000-4-3, ed. 2), EN 50130-4, chap. 11 (EN 61000-4-6), EN 50130-4, chap. 12, (EN 61000-4-4, ed. 2], EN 50130-4, chap. 13 (EN 61000-4-5], EN 61000-4-8, EN 61000-4-9, EN 61000-6-1, EN 51000-6-2, EN 55022, chap. 5 and chap. 6

Seismic resistance: IEC 980: 1993, par. 6

The product is furnished with CE label issued in 2014

As documentation serve the protocoles of authorized and accredited organizations:

EMC

Seismic resistance

MO CR, Testing institute of technical devices, protocol no. 80/6-46/2006 of 15/01/2014
MO CR, Testing institute of technical devices, protocol no. EMI.80/6-333/2006 of 15/01/2014 VOP-026 Stemberk, protocol no.: 6430-16/2007 of 07/02/2007 03/03/2014

Place and date of issue: Prague, 5. Februar 2014

Miroslav Hackl v.r.
Company representative

[^0]: I
 Hems for "Limits" and "Analog output" are accessible only if incorporated in the instrument.

[^1]: Stamp, signature

