Operating Instructions

for

Ultrasonic Flowmeter/ -Monitor/ Counter/ -Dosing Unit

Model: DUK

1. Contents

1. Contents 2
2. Note 3
3. Instrument Inspection 3
4. Regulation Use 3
5. Operating Principle 4
5.1 General 4
6. Mechanical Connection 5
6.1 Check operating conditions. 5
6.2 Installation 5
7. Electrical Connection 7
7.1 General 7
7.2 DUK-...S300 7
7.3 DUK-...S30D 7
7.4 DUK-...F3x0; DUK-...L3x3 8
7.5 DUK-...L443 8
7.6 DUK-...C30. 8
7.7 DUK-...C34 8
7.8 DUK-...Ex4R, DUK-...Gx4R 9
7.9 DUK-...Bxxx, DUK-...Dxxx, DUK-...Kxxx 11
7.10 DUK-...Axxx 11
8. Operation 12
8.1 Switch point setting DUK-...S300, DUK-...S30D 12
8.2 Counter electronics DUK-...Ex4R 12
8.3 Dosing electronics DUK-...Gx4R 12
8.4 ADI electronic DUK-...Bxxx, DUK-...Dxxx, DUK-...Kxxx 12
8.5 ADI Dosing Electronic DUK-...Axxx 12
9. Adjustments - Compact Electronics DUK-...C3. 13
9.1 Button function 13
9.2 Settings 13
9.3 Value setting 14
9.4 Set-up mode 15
9.5 Main menu items 17
10. Maintenance 20
11. Technical Information 21
12. Order Codes 24
13. Dimensions 25
14. Declaration of Conformance 29
Manufactured and sold by:Kobold Messring GmbHNordring 22-24D-65719 HofheimTel.: +49 (0)6192-2990Fax: +49(0)6192-23398
E-Mail: info.de@kobold.com
Internet: www.kobold.com

2. Note

Please read these operating instructions before unpacking and putting the unit into operation. Follow the instructions precisely as described herein.
The devices are only to be used, maintained and serviced by persons familiar with these operating instructions and in accordance with local regulations applying to Health \& Safety and prevention of accidents.

When used in machines, the measuring unit should be used only when the machines fulfil the EWG-machine guidelines.

as per PED 97/23/EG

In acc. with Article 3 Paragraph (3), "Sound Engineering Practice", of the PED 97/23/EC no CE mark.
Diagram 8, Pipelines, Group 1, dangerous fluids

3. Instrument Inspection

Instruments are inspected before shipping and sent out in perfect condition. Should damage to a device be visible, we recommend a thorough inspection of the delivery packaging. In case of damage, please inform your parcel service / forwarding agent immediately, since they are responsible for damages during transit.

Scope of delivery:

The standard delivery includes:

- Ultrasonic Flowmeter/ -Monitor/ -Counter/ -Dosing Unit model: DUK
- Operating Instructions

4. Regulation Use

Any use of the Compact Magnetic-Inductive Flow Meter, model: DUK, which exceeds the manufacturer's specifications, may invalidate its warranty. Therefore, any resulting damage is not the responsibility of the manufacturer. The user assumes all risk for such usage.

5. Operating Principle

5.1 General

The new KOBOLD type DUK flow meters are used for the measurement, monitoring, metering and dosing of low viscosity fluids.
The devices work on the principle of the difference in running times.
This is based on the fact that ultrasonic waves in a medium are influenced by the speed of flow.
Two sensors mounted opposite one another in the pipeline function simultaneously as transmitter and receiver of ultrasound signals.
If there is no flow, then the running times of both signals are identical. If the medium is flowing, then the running time of the signal against the flow is longer than that with the flow.
The running time difference, which is determined by a microprocessor, is proportional to the speed of flow.

The devices can be equipped with a switching output, a frequency output or an analogue output. In addition, a compact circuit can be selected that features a digital display, a switching output and an analogue output.
The device series is rounded off by an optionally available dosing and meter circuit. The meter circuit indicates the momentary flow rate in the first line of the display and the partial or total quantity in the second line. A dosing circuit controls simple filling tasks and similarly measures flow rates, total amounts and filling amounts. The analogue output and two relay outputs can be used for further processing of the signals.

6. Mechanical Connection

6.1 Check operating conditions

- flow rate
- max. operating pressure
- max. operating temperature

In general the DUK is subjected to the same loads as the piping into which it is installed. The DUK should therefore be kept free from extreme loads, such as pressure surges with strong, dynamic pipe movements, vibrations in the proximity of centrifugal pumps, high temperature media, flooding etc.

6.2 Installation

- Remove all packing materials and transport retainers and ensure that no such materials remain in the device.
- It can be installed in vertical, horizontal or rising pipes. Flow in direction of the arrow.
- Avoid pressure and tensile load.
- Mounting the inlet and outlet pipe in a distance of 50 mm from the connections.
Attention! The sensor may be damaged if it is tightened above the
tightening torque range. Also, if it is tightened below the
tightening torque range, the connecting thread section may
loosen.
- Avoid valves or large reduction on the inlet section (this increases the inaccuracy of measurements).
- Check the leak tightness of the connections.

In-/Outlet

Mounting from top to bottom
avoid these installation areas

7. Electrical Connection

7.1 General

Attention! Make sure that the voltage values of your system correspond with the voltage values of the measuring unit.

- Make sure that the supply wires are de-energised.
- Connect the supply voltage and the output signal to the plug PIN's as stated below.
- We recommend the use of wires with cross sectional area of min. $0,25 \mathrm{~mm}^{2}$.

7.2 DUK-...S300

7.3 DUK-...S30D

7.4 DUK-...F3x0; DUK-...L3x3

Connection example DUK-...L3x3

7.5 DUK-...L443

7.6 DUK-...C30..

7.7 DUK-...C34..

7.8 DUK-...Ex4R, DUK-...Gx4R

Cable connection

Wire number	DUK-..E14R Counter electronics
1	+24 V ${ }_{\text {DC }}$
2	GND
3	$4-20 \mathrm{~mA}$
4	GND
5	n. C.
6	Reset part quantity
7	Relay S1
8	Relay S1
9	Relay S2
10	Relay S2

Wire number	DUK-..G14R Dosing electronics
1	+24 V $_{\text {DC }}$
2	GND
3	$4-20 \mathrm{~mA}$
4	GND
5	Control 1*
6	Control 2*
7	Relay S1
8	Relay S1
9	Relay S2
10	Relay S2

*Control 1<->GND: Start-dosing
Control 2<->GND: Stop-dosing
Control 1 <-> Control 2 <-> GND: Reset-dosing

Plug connection

7.9 DUK-...Bxxx, DUK-...Dxxx, DUK-...Kxxx

Power supply

7.10DUK-...Axxx

DUK

8. Operation

The units are preset and after electrical connection ready for operation.

8.1 Switch point setting DUK-...S300, DUK-...S30D

Switch setting	Switch point
0	Switch function deactivated
1	10% of f.s.
2	20% of f.s.
3	30% of f.s.
4	40% of f.s.
5	50% of f.s.
6	60% of f.s.
7	70% of f.s.
8	80% of f.s.
9	90% of f.s.

Flow above switch point: DUO-LED green
Flow below switch point: DUO-LED red

8.2 Counter electronics DUK-...Ex4R

Operating please see Operating Instructions ZED-Z

8.3 Dosing electronics DUK-...Gx4R

Operating please see Operating Instructions ZED-D

8.4 ADI electronic DUK-...Bxxx, DUK-...Dxxx, DUK-...Kxxx

Operating please see Operating Instructions ADI-B/-D/-K

8.5 ADI Dosing Electronic DUK-...Axxx

Operating please see Operating Instructions ADI-Z

9. Adjustments - Compact Electronics DUK-...C3..

Connect the compact electronics according to previous connection diagram and supply with the indicated power supply.
After power on, the measuring range (end current) will be shown for 3 seconds.

9.1 Button function

In the standard mode (measuring mode)
: Press 3 sec. \rightarrow Setup mode

- Switch point/Window point

In the set-up mode

9.2 Settings

The following values can be changed in the compact electronic:

	Scale range	Factory setting
Switch point (SPo, SP1, SP2)	0... 999	0,00
Hysteresis (HYS)	-199... 0	-0,00
Window point (duo point) (duo)	Switch point ... 999	--- (inactive)
Contact-type (Con, Co1, Co2)	(no),(nc) or frequency (Fr)**	no
Start current (S-C)*	000... 999	000
End current (E-C)*	000... 999	FS
Start current selection (SCS)	0-- (0 mA), 4-- (4 mA)	4 mA
Change Code (CCo)	000... 999	000

9.3 Value setting

From the main menu item (for example: switch point, "SPo"), press the " " button to set the value. The flow chart below illustrates the universal routine for changing individual parameters.
[From the main menu item]

1. Adjust position
2. Adjust position
3. Adjust position

Adjust decimal point

Save selected value
or
enter new value.
[To the next main menu item]

9.4 Set-up mode

Compact electronics DUK-...C30..

DUK

Compact electronics DUK-...C34

9.5 Main menu items

9.5.1 Switching point

The switching point is entered in the menu item "Spo, SP1, SP2". A setting value between 000 and 999 can be selected. This value can also include a decimal point. The decimal point can be set at two points (e.g. 10.0 or 1.00). If the display value exceeds the set switch point, the electronic is activated and is signalised by a lightning LED.
If the hysteresis is equal to zero and the window point is de-activated, the electronic switches back whenever the indicated value falls below the switching point.

9.5.2 Hysteresis

After the setting of the switching point, the hysteresis can be entered as a negative value in the "HYS" menu. The standard hysteresis value is zero. In operation condition this can lead to ambiguous switching behaviour, if the reading fluctuates around the switching point or window point. In this case, increasing the hysteresis can put things right. The hysteresis relates to the switching point and the window point (switching point minus hysteresis; window point plus hysteresis).

Example: Switch point $100 \mathrm{~L} / \mathrm{min}$; Hysteresis: $-2.5 \mathrm{~L} / \mathrm{min}$
The electronics switches when $100 \mathrm{~L} / \mathrm{min}$ is exceeded and switches back when the reading under-runs below $97.5 \mathrm{~L} / \mathrm{min}$.

9.5.3 Window point (duo-point)

As well as the switching point, it is also to define a "duo" (duo-point), the window point. This must be higher than the switching point. By using the window point and the switching point it is possible to monitor the measurement value in a certain range. The switching point limits the measurement range to smaller values and the window point to larger values.
 If the window point (duo-point) is less than or equal to the switching point, an error report (Er4) will be indicated on the display and its value is deleted and its function is invalid (in the case that the window point and switching point out of adjustment).

The value is set in the same way as the switch point.
The window point is needed for process, in which monitoring of a certain measurement range is necessary.

Example: Switching point: 100 L/min; window point: 150 L/min; hysteresis: -1 L/min

The electronic switches when $100 \mathrm{~L} / \mathrm{min}$ is exceeded. If the measured value remains between $99 \mathrm{~L} / \mathrm{min}$ (100-1) and $151 \mathrm{~L} / \mathrm{min}(150+1)$, the contact will also remain in active switching condition (LED on). If it exceeds $151 \mathrm{~L} / \mathrm{min}$ or is below $99 \mathrm{~L} / \mathrm{min}$ the electronic switches back.

Switching behaviour

The following diagram clarifies the switching behaviour of the electronics. The contact closes (contact type: no) when exceeding below the switching point or when it under-runs the window point. It only opens again if the window point plus hysteresis is exceeded or if it drops below the switching point minus hysteresis. An LED indicates the switching condition of the switching point.

9.5.4 Filter

The filter function "Filt" forms a running average from the measured values. The following values can be set (see section 8; set up):

$$
1 / 2 / 4 / 8 / 16 / 32 / 64
$$

They correspond to the number of samples used in the running average. The filter value determines the dynamic behaviour of the display value. The larger the adjusted value, the slower the display response. With a filter value of " 1 " the filter is switched off, i.e. the display value is equal to the unfiltered measured value.

The integrated step function detector reacts to a change of value corresponding to approx. 6.25% of the full scale value. As soon as a step function signal is detected, the instantaneous measured value is directly indicated in the display.

9.5.5 Contact type

The function of the transistor switching output is set in menu item "Con, Co1 or Co2". The switching function switches from
no - N/O contact to
nc - N/C to
Fr - frequency (only Con and Co1)
and back.
N/O contact: contact closes when switch point is exceeded
N/C contact: contact opens when switch point is exceeded
Frequency: frequency output is proportional to flow value

9.5.6 Current output

The current output is selected in menu items
"S-C" Start current indicated value < > 0(4) mA
"E-C" End current indicated value <> 20 mA
"SCS" Start current selection (0-20 mA or 4-20 mA).
The indicated value at which $0(4) \mathrm{mA}$ flow is entered in menu item start current. The indicated value at which 20 mA flow is entered in menu item end current.

9.5.7 Change code

The change code option "CCo" secures the unit against unauthorised tampering. If the code is different from 000, the user must input the code immediately after entering the adjustment mode.

10. Maintenance

The measurement device requires no maintenance if the measurement medium does not cause deposits. In order to avoid problems, we recommend the installation of a filter, such as the magnetic filter, model MFR.
If it is necessary to clean the sensor, the sensor can be rinsed with a suitable liquid. Fibre parts or large particles can be carefully removed with a cleaning cloth or similar.

Work on the electronics can only be performed by the factory, or the warranty is otherwise voided.

11. Technical Information

Measuring principle:
Range:
Medium:
Viscosity:
Accuracy:
Repeat accuracy:
Mounting position:
In-/Outlet:
Media temperature:
Ambient temperature:
Response time:
Pressure:
Pressure loss:
Protection:

Wetted parts

Sensor housing:
Sensors:
Seal:
ultrasonic
see table
liquids with max. 1\% solid
max. $3 \mathrm{~mm}^{2} / \mathrm{s}$
$\pm 1,5 \%$ of F.S.
$\pm 0,5 \%$ of $\mathrm{F} . \mathrm{S}$.
in all directions, flow in direction of the arrow
(horizontal: electronic on top or below)
$10 \times$ DN
$-20 . . .+90^{\circ} \mathrm{C}$
$-20 . .+70^{\circ} \mathrm{C}$
ca. $0,5 \ldots 1 \mathrm{~s}$ (depend of electronic version)
$0 . .16$ bar
max. 150 mbar at F.S.
IP 65

Measuring ranges and weights

Model	Measuring range [L/min]	Size [G/NPT]	$\begin{aligned} & \text { DUK-..S30x } \\ & \text { DUK-...F3x0 } \\ & \text { DUK-...Lxx3 } \end{aligned}$	$\begin{aligned} & \text { DUK- } \\ & \text {...C3xx } \end{aligned}$	DUK-...Exxx DUK-...Gxxx	$\begin{array}{\|c\|} \hline \text { DUK with } \\ \text { ADI } \\ 24 \mathrm{~V} \\ \hline \end{array}$	$\begin{aligned} & \text { DUK with } \\ & \text { ADI } \\ & 230 / 115 \mathrm{~V} \\ & \hline \end{aligned}$
DUK-1xx4	0,08-20	$1 / 2 /$	ca. 850 g	ca. 1050 g	ca. 1000 g	ca. 2150 g	ca. 2700 g
DUK-1xx5	0,16-40	3/4 ${ }^{\text {/ }}$	ca. 1050 g	ca. 1250 g	ca. 1200 g	ca. 2350 g	ca. 2900 g
DUK-1xx6	0,25-63	1"	ca. 1450 g	ca. 1650 g	ca. 1600 g	ca. 2750 g	ca. 3300 g
DUK-1xx8	0,6-150	11/2"	ca. 2350 g	ca. 2550 g	ca. 2500 g	ca. 3650 g	ca. 4200 g
DUK-1xx9	1-250	2 "	ca. 3800 g	ca. 4000 g	ca. 3950 g	ca. 5100 g	ca. 5650 g
DUK-1xxB	2,5-630	3"	ca. 7100 g	ca. 7300 g	ca. 7250 g	ca. 8400 g	ca. 8950 g

DUK-...S300, DUK-...S30D

Display:
Switching output (..S300):
Switching output (..S30D):
Switch point:

Power supply:
Power consumption:
Electrical connection:
duo-LED for switch status
relay SPDT, max. 1 A/30 V ${ }_{\text {DC }}$
active $24 \mathrm{~V}_{\mathrm{DC}}$, N / C and N / O
10... 90 \% f.s. in 10 \%-steps
that can be configured by the
customer using a rotary encoder switch
$24 \mathrm{~V}_{\mathrm{DC}} \pm 20 \%$
12 mA
plug M12, 5-pin

DUK-...F300, DUK-...F390
Impulse output:
Frequency at F.S.:

Power supply:
Power consumption:
Electrical connection:
DUK-...L303; DUK-...L343
Output:
Load:
Power supply:
Electrical connection:

PNP, Open Collector, max. 200 mA
500 Hz (...F300)
$50 \ldots 1000 \mathrm{~Hz}$ (...F390)
proportional to flowrate
$24 V_{D C} \pm 20$ \%
5 mA
plug M12, 5 -pin

0(4)-20 mA, 3-Leiter
max. 500Ω
$24 V_{D C} \pm 20 \%$
plug M12x1

DUK-...L443 (usage with AUF-3000)

Output:
Load:
Power supply:
Electrical connection:

4-20 mA, 3-Leiter
500Ω
$24 V_{D C} \pm 20$ \%
plug DIN 43650

DUK-...C3xx (Compact electronics)

Display:
Analogue output
Load:
Switching output:
Contact function:

Settings:
Power supply:
Power consumption:
Electrical connection:

3-digit LED
0(4)... 20 mA adjustable (only DUK-...C34x)
max. 500Ω
1(2) semiconductor PNP or NPN, set at factory, max. 300 mA
N/C-N/O-frequency programmable
(frequency output not calibrated, frequency at F.S. approx. 1400 Hz)
via 2 buttons
$24 \mathrm{~V}_{\mathrm{DC}} \pm 20 \%$, 3-wire
ca. 100 mA
plug M12x1

DUK-...Exxx (Counter electronics)

Display:
LCD, 2×8 digit, illuminated
total, part and flow quantities, units selectable
Quantity meter:
Analogue output:
Load:
Switching output:
Settings:
Functions:
Power supply:
Power consumption:
8-digit
(0)4... 20 mA adjustable
max. 500Ω
2 relays, max. 250 V/5 A/1000 VA
via 4 buttons
reset, MIN/MAX memory, flow monitor, monitoring for part and total quantity, language

Electrical connection: cable connection or M 12 plug more technical details see data sheet ZED in the brochure Z2

DUK-...Gxxx (Dosing electronics)

Display: LCD, 2×8 digit, illuminated, dosing, total and flow quantity, units selectable
Quantity meter:
8-digit
Dosage:
5-digit
Analogue output:
(0)4... 20 mA adjustable

Load:
max. 500Ω
Switching output:
2 relays, max. $250 \mathrm{~V} / 5 \mathrm{~A} / 1000 \mathrm{VA}$
Settings:
via 4 buttons
Functions:
dosing (relay S2), start, stop, reset, fine dosing, correction amount, flow switch, total quantity, language
Power supply:
Power consumption:
Electrical connection:
$24 \mathrm{~V}_{\mathrm{DC}} \pm 20$ \%, 3-wire approx. 150 mA
mable connection or M 12 plug

DUK with ADI electronic

Display:
Analogue output:
Switching output:
bar graph, 3.5-digit digital or
combination display; batch system
4... $20 \mathrm{~mA}, 0 . . .10 \mathrm{~V}$

2 relays/SPDT, max. $115 / 230 \mathrm{~V}_{\mathrm{AC}}$,
5 A resistive load
max. $30 \mathrm{~V}_{\mathrm{DC}} / 5 \mathrm{~A}$
or
2 Open-Collector
$5-50 \mathrm{~V}_{\mathrm{DC}}$, Itotal= 50 mA
Settings:
Power supply:
via 3 buttons
Electrical connection:
$230 / 115 / 48 / 24 \mathrm{~V}_{\mathrm{AC}}, 24 \mathrm{~V}_{\mathrm{DC}}$
pluggable terminal block
cable gland
more technical details see data sheet ADI electronic in the brochure Z 2

12. Order Codes

Order details (Example: DUK-11 G4H S300 L)

Model / Housing material	Connection*	Electronic		Flow direction
DUK-11 = Messing DUK-12 = st. st. 1.4408	G4H = G $1 / 2$ fem. G5H $=$ G $3 / 4$ fem. $\mathbf{G 6 H}=\mathrm{G} 1 \mathrm{fem}$. G8H = G 1112 fem. G9H = G 2 fem. $\mathbf{G B H}=\mathrm{G} 3 \mathrm{fem}$. N4H = $1 / 2$ NPT fem. $\mathrm{N} 5 \mathrm{H}=3 / 4 \mathrm{NPT}$ fem. N6H = 1 NPT fem. $\mathrm{N} 8 \mathrm{H}=11 / 2$ NPT fem. $\mathrm{N} 9 \mathrm{H}=2 \mathrm{NPT}$ fem. NBH $=3$ NPT fem.	Switching output S300= Relay, M12-Plug S30D = active 24 VDC, M12-Plug Frequency output F300 = M12-Plug, 500 Hz F390 = M12-Plug, $50 \ldots 1000 \mathrm{~Hz}$ Analogue output L303 $=$ M12-Plug, 0-20 mA L343= M12-Plug, 4-20 mA L443= DIN-Plug, 4-20 mA Compact electronic C30R=2xOpen Collector, PNP C30M $=2 \times$ Open Collector, NPN C34P $=0(4)-20 \mathrm{~mA}, 1 \mathrm{xOpen}$ Collector, PNP C34N= 0(4)-20 mA, 1xOpen Collector, NPN ADI-Electronic Counter electronic E14R= LCD, 0(4)-20 mA, 2xRelay, 1 m cable E34R= LCD, 0(4)-20 mA, 2xRelay, M12-Plug Dosing electronic G14R= LCD, 0 (4)-20 mA, 2xRelay, 1 m cable G34R= LCD, 0(4)-20 mA, 2xRelay, M12-Plug	Contact $\begin{aligned} & \hline 0=\text { without } \\ & 2=2 \text { Wechsler } \\ & 6=2 \text { Open } \\ & \text { Collector } \end{aligned}$	$L=$ from left to right $\mathbf{R}=$ from right to left T = from top to bottom $B=$ from bottom to top

[^0]
13. Dimensions

Model	G / NPT	SW $[\mathbf{m m}]$	\mathbf{H} $[\mathbf{m m}]$	\mathbf{L} $[\mathbf{m m}]$	\mathbf{B} $[\mathbf{m m}]$
DUK-xxx4	$1 / 2$	30	57	114	$\mathrm{ca.72}$
DUK-xxx5	$3 / 4$	36	59	126,5	$\mathrm{ca} 76$.
DUK-xxx6	1	46	63	146	ca .80
DUK-xxx8	$11 / 2$	60	69	190	$\mathrm{ca} 90$.
DUK-xxx9	2	76	74	238	$\mathrm{ca} 97$.
DUK-xxxB	3	105	84	306	$\mathrm{ca} 122$.

DUK-...S30x; DUK-...F3x0; DUK-...L3x3

DUK-...L443

DUK-...C3xx

DUK-...Ex4R, DUK-...Gx4R

DUK-...Bxxx, DUK-...Dxxx, DUK-...Kxxx, DUK-...Axxx,

14. Declaration of Conformance

We, KOBOLD Messing GmbH, Hofheim-Ts, Germany, declare under our sole responsibility that the product:

Ultrasonic Flowmeter/ -Monitor/ -Counter/ -Dosing Unit Model: DUK-...
to which this declaration relates is in conformity with the standards noted below:

EN 61326-1 2006

Electrical equipment for control and instrumentation technology and laboratory use

DIN EN 61010-1 2002
Safety requirements for electrical measuring-, control- and laboratory instruments

Also the following EEC guidelines are fulfilled:

2004/108/EEC EMC Directive

H. Peters General Manager

M. Wenzel

Proxy Holder

[^0]: * Standard display in L/min, Optional: Display GPM (Code G instead of H)

